Calcium-channel activation and matrix protein upregulation in bone cells in response to mechanical strain.

نویسندگان

  • L M Walker
  • S J Publicover
  • M R Preston
  • M A Said Ahmed
  • A J El Haj
چکیده

Femur-derived osteoblasts cultured from rat femora were loaded with Fluo-3 using the AM ester. A quantifiable stretch was applied and [Ca(2+)]i levels monitored by analysis of fluorescent images obtained using an inverted microscope and laser scanning confocal imaging system. Application of a single pulse of tensile strain via an expandable membrane resulted in immediate increase in [Ca(2+)]i in a proportion of the cells, followed by a slow and steady decrease to prestimulation levels. Application of parathyroid hormone (10(-6) M) prior to mechanical stimulation potentiated the load-induced elevation of [Ca(2+)]i. Mechanically stimulating osteoblasts in Ca(2+)-free media or in the presence of either nifedipine (10 microM; L-type Ca(2+)-channel blocker) or thapsigargin (1 microM; depletes intracellular Ca(2+) stores) reduced strain-induced increases in [Ca(2+) ]i. Furthermore, strain-induced increases in [Ca(2+)]i were enhanced in the presence of Bayer K 8644 (500 nm), an agonist of L-type calcium channels. The effects of mechanical strain with and without inhibitors and agonists are described on the total cell population and on single cell responses. Application of strain and strain in the presence of the calcium-channel agonist Bay K 8644 to periosteal-derived osteoblasts increased levels of the extracellular matrix proteins osteopontin and osteocalcin within 24 h postload. This mechanically induced increase in osteopontin and osteocalcin was inhibited by the addition of the calcium-channel antagonist, nifedipine. Our results suggest an important role for L-type calcium channels and a thapsigargin-sensitive component in early mechanical strain transduction pathways in osteoblasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of verapamil on the immediate-early gene expression of bone marrow mesenchymal stem cells stimulated by mechanical strain in vitro

BACKGROUND To study the effects of verapamil on the immediate-early genes (IEGs) expression of bone marrow mesenchymal stem cells (MSCs) stimulated by cyclic mechanical strain, in order to deduce the role of calcium ion channel in the cell signaling responses of MSCs to mechanical strain. MATERIAL AND METHODS MSCs were isolated and cultured, and the passage of 3-6 MSCs were stimulated by mech...

متن کامل

Nonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres

General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...

متن کامل

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

Magneto-mechanical Stimulation of Bone Marrow Mesenchymal Stromal Cells for Chondrogenic Differentiation Studies

Mechanical interaction of cells and their surroundings are prominent in mechanically active tissues such as cartilage. Chondrocytes regulate their growth, matrix synthesis, metabolism, and differentiation in response to mechanical loadings. Cells sense and respond to applied physical forces through mechanosensors such as integrin receptors. Herein, we examine the role of mechanical stimulation ...

متن کامل

Mechanical stretch induced calcium efflux from bone matrix stimulates osteoblasts.

The mechanisms by which bone cells sense critically loaded regions of bone are still a matter of ongoing debate. Animal models to investigate response to microdamage involve post mortem immunohistological analysis and do not allow real-time monitoring of cellular response during the emergence of the damage in bone. Most in vitro mechanical stimulation studies are conducted on non-bone substrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cellular biochemistry

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 2000